I've put up a few videos of our evolved car racing controllers. The fascinating thing is that no human has told the cars you will see below how to drive, or indeed how to maneuver aggressively so that competitors crash into walls. Instead, me and Simon used evolution strategies (similar to genetic algorithms) to evolve neural networks (sort of simple simulated brains) that control the cars. It's plain simple survival of the fittest - we start with random networks, and see who can drive the car furthest in a set time. To start with, all of the networks are pretty bad, but some are less bad than the others, so we allow them to "reproduce" (being copied) with small changes, and repeat the process... Just like in nature, this seemingly random process produces seemingly intelligent behaviour.

To start with, this is a single car driving one of the standard tracks:

## Thursday, April 27, 2006

## Saturday, April 22, 2006

### This is me

Last summer, I volunteered to be a subject in some BCI (Brain-Computer Interface) research. Hinrik, an MSc student I also used to go out and get drunk with (and try to avoid fighting with squaddies, but that's another story) was doing a project on robot control via EEG. He fitted lots of electrodes on my head, and I had to think of moving (without moving) while watching a robot move. This is what I looked like:

Nice, eh?

BCI is definitely an interesting field, and the BCI group here at Essex seems to contest of thoroughly nice (and competent!) people. I wouldn't mind being more involved in such research...

...but no, I have enough to do as it is. And I'm quite happy with what I do.

Nice, eh?

BCI is definitely an interesting field, and the BCI group here at Essex seems to contest of thoroughly nice (and competent!) people. I wouldn't mind being more involved in such research...

...but no, I have enough to do as it is. And I'm quite happy with what I do.

### Evolutionary sudoku solving

Alberto, me, and Simon recently got our paper on evolutionary sudoku solving accepted at CEC 2006. We thought we were the first researchers in the world to apply evolutionary algorithms to Sudoku, but according to one of the reviewers, we actually came second, as another paper on EC and Sudoku was accepted to Euro-GP a month or so earlier.

Anyway, our experiments worked really well. A quick introduction, for those who don't think in terms of evolutionary algorithms: We start with the empty sudoku grid, empty except for the fixed positions that define the puzzle. The algorithm, in its very simplest version, then fills in the empty positions with random numbers between one and nine. At each generation, a random change (mutation) was made to each grid, by changing one of the non-fixed numbers to another random number between one and nine. At the end of each generation, the fitness of each grid was evaluated by counting the number of unique elements in each row, grid and square. The grids with highest fitness were kept for next generation, and those with lower fitness were replaced with mutated clones of those with higher fitness, just like in nature. After a number of generations, such an algorithm actually solves most, if not all, Sudoku problems!

Not that our evolutionary algorithms solved sudoku grids faster than existing methods that take into account the structure of the problem - it is doubtful whether evolution will ever do that, at least for standard-size grids. But our main aim was to verify some predictions from Alberto's theory using Sudoku as a testbed.

Alberto's theory is about geometric crossover. In my description I omitted crossover - when a new individuals (in this case a new Sudoku grid) is created by mixing two parents (in this case two other Sudoku grids). Actually, many evolutionary algorithms don't use crossover, because it is so tricky to get it right - it can easily end up doing more harm than good. But when it's used right it can actually improve the efficiency of an evolutionary algorithm dramatically. The highly mathematical theory of Alberto is about exactly what sort of crossover is appropriate for what problem representation. Greatly simplified, it says that the offspring should be somewhere between its parents in the multidimensional space of representations. And it turned out that the crossover operators designed according to this theory indeed were very effective.

But enough about this - go read the paper to get to know more! The source code is available if you want to do your own experiments.

Anyway, our experiments worked really well. A quick introduction, for those who don't think in terms of evolutionary algorithms: We start with the empty sudoku grid, empty except for the fixed positions that define the puzzle. The algorithm, in its very simplest version, then fills in the empty positions with random numbers between one and nine. At each generation, a random change (mutation) was made to each grid, by changing one of the non-fixed numbers to another random number between one and nine. At the end of each generation, the fitness of each grid was evaluated by counting the number of unique elements in each row, grid and square. The grids with highest fitness were kept for next generation, and those with lower fitness were replaced with mutated clones of those with higher fitness, just like in nature. After a number of generations, such an algorithm actually solves most, if not all, Sudoku problems!

Not that our evolutionary algorithms solved sudoku grids faster than existing methods that take into account the structure of the problem - it is doubtful whether evolution will ever do that, at least for standard-size grids. But our main aim was to verify some predictions from Alberto's theory using Sudoku as a testbed.

Alberto's theory is about geometric crossover. In my description I omitted crossover - when a new individuals (in this case a new Sudoku grid) is created by mixing two parents (in this case two other Sudoku grids). Actually, many evolutionary algorithms don't use crossover, because it is so tricky to get it right - it can easily end up doing more harm than good. But when it's used right it can actually improve the efficiency of an evolutionary algorithm dramatically. The highly mathematical theory of Alberto is about exactly what sort of crossover is appropriate for what problem representation. Greatly simplified, it says that the offspring should be somewhere between its parents in the multidimensional space of representations. And it turned out that the crossover operators designed according to this theory indeed were very effective.

But enough about this - go read the paper to get to know more! The source code is available if you want to do your own experiments.

Subscribe to:
Posts (Atom)